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Abstract

Timed Automata (TA) are formal models capable of rep-

resenting regular languages with timing constraints, mak-

ing them well-suited for modeling systems where behavior

is driven by events occurring over time. Most existing work

on TA learning relies on active learning, where access to a

teacher is assumed to answer membership queries and pro-

vide counterexamples. While this framework offers strong

theoretical guarantees, it is impractical for many real-world

applications where such a teacher is unavailable. In con-

trast, passive learning approaches aim to infer TA solely

from sequences accepted by the target automaton. How-

ever, current methods struggle to handle noise in the data,

such as symbol omissions, insertions, or permutations, often

resulting in excessively large and inaccurate automata. In

this paper, we introduce TADAM, a novel approach that

leverages the Minimum Description Length (MDL) princi-

ple to balance model complexity and data fit, allowing it

to distinguish between meaningful patterns and noise. We

show that TADAM is significantly more robust to noisy data

than existing techniques, less prone to overfitting, and pro-

duces concise models that can be manually audited. We fur-

ther demonstrate its practical utility through experiments

on real-world tasks, such as network flow classification and

anomaly detection.

1 Introduction

The inference of system behavior models from obser-
vational data allows gaining insight into complex sys-
tems without requiring expert knowledge and a time
consuming process. Such models can then be used to
automatize various tasks such as monitoring, diagnos-
tics, or scheduling [15, 1]. Timing of events is par-
ticularly crucial in many domains, including real-time
systems and communication protocols. To capture this
aspect, these systems can be modeled using timed au-
tomata (TA) [2], a well-established formalism for event
sequence data that includes temporal information. For
instance, Fig. 1 illustrates an automaton modeling in
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a simplified way the establishment of a TCP network
connection between two devices.

LISTEN
SYN
SENT

ESTAB-
LISHED

CLOSE

SYN sent
N (0, 0), p = 1

e1
SYN sent

N (3000, 5), p = 0.1
e2

SYN-ACK received
N (10, 5), p = 0.9e3
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Figure 1: A timed automaton extended with probabilis-
tic parameters as model of a simplified TCP connection.

The current state of the system can be mapped to a
location in the automaton (LISTEN, SYN SENT, etc.)
at a given time. The state transitions triggered by an
event are modeled by transitions between locations that
are labeled with a corresponding symbol (SYN sent,
SYN-ACK received, etc.). A guard on each transition
describes the temporal delay associated with an event.
For example, SYN messages can be regularly sent
from the sender until SYN-ACK message is received,
triggering the transition from the location SYN SENT
to ESTABLISHED. Such sequences of events occurring
during an execution of the system are called words.

Several methods have been proposed to learn timed
automata from observational data. However, the issue
of noise in the data remains unaddressed, despite the
fact that available data are often incomplete and noisy,
making it harder to infer accurate models. Noise can
arise from various sources: limited measurement accu-
racy, probe configuration errors [8], incorrect labelling,
etc. The current methods are therefore unsuited for a
large proportion of real-world applications.

A second challenge in inferring timed automata is
to find the good level of generalization between two
extremes: an automaton with a single location and only
self-loop transitions which accepts every possible words,
and an automaton with one branch per event sequence
which only accepts the learning data.

To address both these challenges, we present an
approach based on the Minimum Description Length
(MDL) principle [7], a model selection criterion that
favors simple models that most efficiently compress the
data. By balancing complexity and goodness of fit, the
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MDL principle is particularly relevant for noisy data as
it discourages overly complex models that might capture
random noise rather than true underlying patterns.

This paper presents the following contributions:
(1) An MDL encoding for timed automata (Sec. 4.2);

(2) A word correction strategy for data encoding
(Sec. 4.3);

(3) TADAM, the first algorithm to learn TA from
noisy data (Sec. 5).

2 Related Work

The vast majority of timed automata learning literature
relies on active learning, with access to a teacher that
can provide counterexample to an equivalence query or
the answer to the membership query of one word [3, 17].

Learning TA solely from observational data (passive
learning) has received much less attention due to the
complexity of the absence of counter-examples to guide
the process. Cornanguer et al. [4] have proposed the
TAG algorithm that controls the model generalization
level by factorizing the TA on sub-sequence of events of
fixed length. Verwer et al. [16] have proposed the RTI+
algorithm which transforms the learned automaton by
performing operations that improve the likelihood of
the data with the model. Yet, these algorithms are not
designed to be robust to noise in the data.

In the broader literature on model inference without
temporal consideration, various strategies have been
proposed to tackle the challenge of noise. Wiegand,
Klakow, and Dietrich [19] proposed a greedy MDL-
based approach to learn an event pattern graph. To
handle noise, they compute covers to indicate how to
read the data with a given pattern graph. There is no
notion of time and the graph edges are not weighted,
making the search problem simpler. Wallner, Aichernig,
and Burghard [18] learn Moore machines using SAT
solving by looking for the deterministic model that
is consistent with the largest proportion of the input
sample. In addition to have no consideration of time,
their algorithm requires to specify the number of state
of the model, and there are no clear model selection
criterion, only guidelines.

3 Preliminaries

We first present our modeling formalism based on timed
automata, and then introduce the MDL principle.

3.1 Timed Automata Timed automata (TA) [2]
are finite-state automata extended with temporal pa-
rameters that can model systems governed not only by
the occurrence of events but also by time. In this pa-
per, we consider a sub-class of TA, called Real-Time

Automata (RTA) [5], with a single type of temporal pa-
rameter: the delay between two events.

Definition 1. (Real-Time Automaton) A real-
time automaton is a tuple A = (Q,Σ, E , q0,F) where
Q is a finite set of locations, Σ is a finite set of
symbols (or events) called alphabet, E is a finite set of
transitions, q0 ∈ Q is the initial location, and F is a
finite set of accepting locations.
E ⊆ Q × Σ × N2 × Q is a finite set of transitions of
the form (q, a, g, q′) where q and q′ are respectively
the source location and destination location, a ∈ Σ
is a symbol, g is a guard in the form of an interval
constraining the delay.

Motivated by the noisy learning environment setup,
we introduce a probabilistic variation of the RTA de-
noted pRTA. A probabilistic transition has a probability
to be triggered from its source location and the interval
guard is replaced by a probability distribution. The TA
displayed in Fig. 1 is a pRTA.

Definition 2. (Probabilistic transition) A prob-
abilistic transition e = (q, a,G, p, q′) is a transition
where G is a normal distribution N (µ, σ2) and p is the
probability p(e|q) of the transition from q.

We now present the concepts of timed words (infor-
mally referred to as event sequences in the introduction)
and timed automata language.

Definition 3. (Timed word) A timed word w =
(a0, t0)(a1, t1)... ∈ (Σ×N)∗ is a finite sequence of sym-
bols and non-decreasing timestamps.
In the context of pRTA, we can re-write a timed word
as a sequence of symbol and delay w = (a0, d0)(a1, d1)...
where d0 = 0 and di = ti − ti−1.

A (timed) word w is consistent with an automaton
A (or accepted by it) if there exists a path from the
initial location to an accepting location, i.e., a sequence

of transitions q0
e0−→ q1

e1−→ ...
ep−→ qf . For a timed

automaton A, the (timed) language denotes the set of
timed words accepted by A. In a RTA, all words in its
language have the same importance, while in a pRTA,
the probability of occurrence of the timed words is no
longer uniform thanks to the probabilistic transitions.

On a final note, to ease the computations, we
consider a unique ending symbol to identify the end of
the words. In the automaton, the transitions labeled by
this ending symbol all lead to a unique final location qf .

3.2 The MDL Principle The Minimum Descrip-
tion Length (MDL) principle [13, 7] is a model selec-
tion criterion that states that the best description for
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some observed data is the shortest one. This princi-
ple is rooted in algorithmic information theory, where
the amount of information conveyed by data or its de-
scription can be quantified in bits. In this work, we
focus on the two-part MDL, where, among a model
class M, the best model M ∈ M is the one minimiz-
ing L(M) + L(D|M), with L(M) the length of model
M in bits and L(D|M) the length of data D encoded
with this model M . This description in two-part allows
us to balance model complexity with the accuracy of
data representation. To apply the MDL principle, an
encoding for the data and the model must be defined.

4 MDL for Timed Automata Learning

This section presents how to leverage MDL to learn
pRTA from noisy timed words.

4.1 Noise Model The noise in a timed word can take
different forms depending on the application. We con-
sider four different noise types, illustrated with an ini-
tial timed word w = (a0, d0)(a1, d1)(a2, d2): deletion
(w = (a0, d0)(a2, d2)), insertion (w = (a0, d0)(a3, d3)
(a1, d1)(a2, d2)), transposition (w = (a0, d0)(a2, d2)
(a1, d1)), and symbol repetition (w = (a0, d0)(a1, d1)
(a1, d3)(a2, d2)) (note that we allow the repeated sym-
bol to be associated with a different delay). TADAM
can also be parameterised with a subset of noise types
depending on the domain’s specificity.

4.2 Model Encoding We define an MDL encoding
for the pRTA model. The more complex the pRTA, the
more expensive it should be to encode. The description
length of a pRTAA corresponds to the sum of the cost of
encoding its locations, its alphabet, for each transition
the source and destination locations, the symbol, the
guards’ normal distributions parameters, and its initial
and accepting locations, and is given by

L(A) =LN(|Q|) + LN(|Σ|) +
∑
e∈E

(
2 log2(|Q|) + log2(|Σ|)

+ LN(⌊µe⌋) + LN(⌊σ2
e⌋)

)
+ 2 log2(|Q|) ,

where LN is the MDL-optimal encoding for integers
defined by [14].

4.3 Data Encoding We now define how to encode
the data D given an automaton A. Due to the presence
of noise, many words in D might be not accepted by the
automaton even if A is equivalent to the true generating
process of D. For this reason, we do not use the classical
data encoding that relies on the word probability [7],
because all the noisy words rejected by A would have a

null probability and would have to be encoded explicitly.
Instead, we integrate into the encoding the notion that
such words could be accepted by A with some light
changes. To do so, we associate the timed words with
an edit operation sequence that describes how to read
and correct them such that they are accepted by the
pRTA. We propose several edit operations that mirror
the noise types presented in Sec. 4.1:

• Add (ad): add a pair (a, d) to the word;
• Skip (sk): ignore a pair (a, d);
• Transpose (tr): permute two consecutive pairs;
• Deduplicate (de): remove a pair (a, d) following a pair
with an identical symbol

• Follow (fo): read the pair (a, d) as it is.

Note that the follow edit operation allows us to handle
the already accepted words in the same way as the words
needing to be corrected.

More formally, an edit operation sequence R is a
sequence of tuple in {add, skip, transpose, deduplicate,
follow} × E ∪ {ϵ} ×N, with ϵ a dummy transition that
is not in E , used when no transtition is to be associated.

For example, given the automaton in Fig. 1, the
timed word (SYN sent, 0),(ACK sent, 500),(SYN sent,
2000),(RST received, 6500) is not recognized. We can
associate it with the following edit operation sequence
R: (follow, e1, 0), (skip, ϵ, 500), (follow, e2, 2000), (add,
e3, 10), (follow, e5, 6500), resulting in the corrected
timed word (SYN sent, 0),(SYN sent, 2000),(SYN-ACK
received, 10),(RST received, 6500) that is accepted.
Note that there can be multiple edit operation sequences
possible for a same word. We propose in Sec. 5.1 an
algorithm to find the edit operation sequence associated
with a timed word that minimizes its encoding cost.

Let us now define the data encoding based on this
notion. We denote Dr the subset of words in D that are
accepted by a pRTA A or for which there exists an edit
operation sequence R that results in a word accepted
by A. Encoding Dr with A consists in encoding R, the
flattened edit operation sequence over all words. Let
RO with O ⊆ {fo, sk,de, tr, ad} denotes a subsequence
of R consisting of all tuples (o, e, d) where o ∈ O. We
define the description length of Dr given A as

L(Dr|A) =
∑

(o,e,d)∈R

− log2(p(o))

+
∑

(o,e,d)∈R{tr,fo,ad}

− log2 p(e | qs(e))

+
∑

(o,e,d)∈R{tr,fo,de}

− log2 p(d | e)

+
∑

(o,e,d)∈R{sk}

(LN(d) + log2(|Σ|))
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where qs(e) is the source location of e and log2(p(o)) is
a fixed cost for each edit operation. The second sum
term corresponds to the probability of the triggered
transition given its source location, the third sum term
corresponds to the probability of the delay given the
triggered edge, and the fourth sum term corresponds
to the explicit encoding of the skipped pairs using
an uniform distribution to encode the symbol and a
universal encoding for the delay. Remark that we only
encode information necessary to retrieve the original
word: for example, there is no need to encode the delay
of a pair introduced by the “add” operation.

This formula can be partially rewritten using the
notion of entropy, which will be useful in a following
section. To this end, we introduce E, the random
variable denoting which edge is triggered. We obtain∑
(o,e,d)∈

R{tr,fo,ad}

− log(p(e | qs(e))) = |R{tr,fo,ad}| ·H(E | qs(E)) .

Similarly, we can show that∑
(o,e,d)∈R{tr,fo,de}

− log(p(d | e)) = |R{tr,fo,de}| ·H(D | E) ,

where D denotes the random variable of the delay, and
that encoding the edit operation corresponds to∑

(o,e,d)∈R

− log2(p(o)) = |R| ·H(O) .

As there may also exist timed words that cannot be
associated with any edit operation sequence, we must
also define an encoding for the uncorrectable words
Du ∈ D. This situation can happen when the noise
model is narrowed and some of the edit operations are
forbidden. Similarly as in the case of the skip operation,
we define the description length of Du given A as

L(Du|A) =
∑

(s,d)∈Du

(LN(d) + log2(|Σ|)) .

Besides, we need to indicate whether a timed word
is encoded as corrected or uncorrectable. We use a
random variable Xr denoting to which set, Dr or Du, a
timed word belongs to. The resulting description length
of D given A is given by

L(D|A) = L(Du|A) + L(Dr|A) + |D| ·H(Xr) .

5 Algorithm

This section first describes the word correction algo-
rithm and then the actual TA learning algorithm.

5.1 Word Correction Algorithm As explained in
Sec. 4, our data encoding relies in some part on a word
correction strategy that we present here. Our goal is
to find the sequence of edit operations that leads to the
minimal description length of the words corrected to be
accepted by A. To this end, we adapt the algorithm
proposed by Oommen and Loke [11] to compute the
optimal string alignment distance between two words to
the problem of aligning a timed word with a pRTA (i.e.,
to the words from its language). Since the main novelty
lies in the cost function, we focus on its description here.

Let A be a pRTA and w = (w0, w1, . . . , wk) a
timed word with wl = (al, dl). Let p(w, q, q′) be the
probability of a (sub-)timed word from location q to q′,
or 0 if no such path exist. We initialize the cost function
as cost(0, q) = minw∈(Σ×N)∗ − log2(p(w, q0, q)) − |w| ·
log2(p(ad)) ∀q ∈ Q. It indicates, for empty timed words,
the most probable (i.e., with minimal cost) sequence of
pairs (a, d) to add to reach q from q0. Let us define an
intermediate cost cost′(l+1, q) to consider the different
edit operation, given by the minimum of

cost(l, q′)− log2(p(fo))− log2(p((wl+1), q
′, q) if

transition q′ → q is labelled with sl+1 (follow)

cost(l, q)− log2(p(de))− log2(p(dl+1 | el)) if
sl+1 = sl, where el is the edge triggered by wl

(deduplicate)

cost(l − 1, q′)− log2(p(tr))

+minq′,q′′∈Q
(
− log2(p((wl+1), q

′, q′′)

− log2(p((wl), q
′′, q))

)
(transpose)

cost(l, q) + LN(dl+1) + log2(|Σ|) (skip)

The cost of reaching a location q from position l + 1 in
the word is given by cost(l + 1, q) = minq′∈Q(cost

′(l +
1, q)+minw∈(Σ×N)∗ − log2(p(w, q, q

′))−|w|·log2(p(ad))),
i.e., the minimal cost of reaching some intermediate lo-
cation q′ and then to reach location q through additions.

5.2 Transformation Operations Given D, the
learning process aims to find the automaton A∗ ∈ pRTA
such that A∗ = argminA∈pRTA L(A) + L(D|A). Enu-
merating all possible automata where each transition is
used by at least one word w ∈ D is impractical, and
allowing some parts of D to remain unrecognized by the
automaton further expands the search space. Therefore,
we opt for a greedy algorithm that iteratively trans-
forms the automaton to reduce the MDL cost. We de-
fine multiple transformations that can be applied to a
given pRTA A. To lighten the notations, we write El,out
to refer to the outgoing transitions of location l, i.e.,
the set of transitions {(q, a,G, p, q′) ∈ E|q = l}, and
similarly El,in to refer to the incoming transitions of l.
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5.2.1 Location Merging The location merge sim-
plifies A by merging two locations. The merge of q and
q′ in A results in their replacement in Q by q′′ with
Eq′′,out = Eq,out ∪ Eq′,out and Eq′′,in = Eq,in ∪ Eq′,in.

5.2.2 Subpart Deletion The subpart deletion re-
duces the size of A and the timed language it accepts.
Let e = (q, a,G, p, q′) be a probabilistic transition in A.
Deleting e results in E ← E \ {e} and in the deletion of
the subpart of A that is no more reachable from q0, or
from which qf is no more reachable.

5.2.3 Location Split The location split replaces a
location q ̸= q0 by a set of new locations Qnew,
changes the destination of the transitions in Eq,in to
locations in Qnew, and recreates the transitions in
Eq,out with a location in Qnew as source whenever it
is needed for a timed word, as shown in Fig. 2. This
transformation is especially interesting with our MDL-
based score because it affects this score very locally,
meaning that despite the high number of new possible
partitions P (exponential in Eq,in), it is straightforward
to estimate the gain or loss induced by it. We present
in the following how to estimate the gain given a new
partition P , and then how to find a good partition P
for a given location q.

We start by showing how we can estimate the MDL
data gain brought from a split. Let A1 be a pRTA and
A2 the pRTA resulting from the split of q in A1. Let
f : E → Q be the destination assignment function that
takes a transition from A1 and return its destination
location in A2. This function allows us to map the
transitions in Eq,in to their new destination in Qnew

after the split. To make our notation clearer in the
following, we provide an example in Fig. 2, but the
explanation holds for any ei ∈ Eq,in (resp. ej ∈ Eq,out)
with source location q′ (resp. destination location q′′).

By construction, the transitions q′
ei−→ q

ej−→ q′′ are

q′

A1

q

q′′

ei

a b c

ej

z
0.5

d
0.5

q′

A2

qi

q′′

ei

a b c

e′
j

z
0.1

z
1.0

d
0.9

E−1

E

Figure 2: An example of the split of a location q (A1 is
before and A2 after). Guards are omitted.

triggered in A1 if and only if the transitions q′
ei−→

f(ei)
e′j−→ q′′ (f(ei) corresponding to qi) are triggered

in A2. This allow us to express the probability of
ej in A1 using the knowledge in A2, which results in
pA1

(ej | f(e−1)) = pA2
(e′j | qi), where e−1 denotes the

transition triggered before ej in A2. To express this
in terms of entropy, we introduce the random variable
E (denoting the triggered transition outgoing from a
location in Qnew) and E−1 (the transition triggered
before E). Then, HA1

(E | qs(E), f(E−1)) = HA2
(E |

qs(E)) because there exists a trivial bijection between
qs(E), f(E−1) in A1 and qs(E) in A2. This way, we can
estimate the impact of the split operation on the cost
of encoding the edges as

|R{tr,fo}|(HA2
(E | qs(E))−HA1

(E | qs(E)))

= |Rq
{tr,fo}|(HA1(E | qs(E) = q, f(E−1))

−HA1(E | qs(E) = q))

= −|Rq
{tr,fo}|IA1

(E; f(E−1) | qs(E) = q) ≤ 0

where |Rq
{tr,fo}| is the number of transpose and fol-

low operations using an edge whose source is q, and
IA1(E; f(E−1) | qs(E)) is the mutual information be-
tween E and f(E−1) given qs(E) in A1.

The intuition behind this formula can be explained
with Fig. 2. Assume that q in A1 can be entered with
either a, b, or c, with equal proportion, and that the next
symbol is either z or d in equal proportion, which makes
the encoding cost of the next symbol high. Consider
now the split of this location, revealing that c is always
followed by z. Now, the cost of z following c is zero
because it must happen with probability equal to 1.
From the location reached by a and b, the encoding
cost of d is much lower in A2 than it was in A1, leading
to an overall lower encoding cost. This is captured
in the formula by the mutual information that is high
between two consecutive symbols. The same reasoning
can show that |R{tr,fo,de}| · (HA2

(D | E) − HA1
(D |

E)) = −|Rq
{tr,fo,de}| · IA1

(D; f(E−1) | E, qs(E) = q).

Location split comes however at a cost in model de-
scription because it adds new locations and transitions.
Therefore, there is an optimal trade-off in the number of
new locations. We propose to find a good partition with
a greedy method presented in Algorithm 1. In practice,
we first start by splitting edges in Eq,in by using a Gaus-
sian mixture model on the delays associated with them,
creating one edge per Gaussian mixture model, to allow
for more refined partitioning.

5.3 Learning Algorithm We now present TADAM
(Timed Automata Discovery Applying MDL), an algo-
rithm that integrates the transformation operations, the
word correction strategy, and the MDL cost computa-
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Algorithm 1 Split search

Require: A location q, a timed automaton A
Ensure: A partition of Eq,in
1: split incoming edges of q using Gaussian mixtures
2: P ← [Eq,in]; mean edge cost← L(A)/|E|
3: best partition← P
4: while |P [0]| > 1 do
5: for all edge e of P [0] do
6: for i = 0 to |P | do
7: P ′ ← P
8: remove e from P ′[0]
9: if i = 0 then

10: append new set {e} to P ′

11: else
12: add e to P ′[i]
13: score← |Rq

{tr,fo}| · I(E; fP ′(E−1) | qs(E))−
(|P ′| − 1)× |Eq,out| ×mean edge cost

14: if score > score(best partition) then
15: best partition← P ′

16: if P = best partition then
17: break
18: P ← best partition
19: return best partition

tion. We provide its pseudo-code in Alg. 2. An open-
source implementation is available1.

The first step is the creation of an initial automaton
accepting all words w ∈ D. Most passive learners of TA
start by a tree-shaped automaton, called prefix tree,
where each word correspond to a branch [16, 4, 12]. We
propose a Markov initialization, where each symbol in
Σ is associated with a location in the initial automaton,
and there is a transition between two locations if their
corresponding symbols ever appear consecutively in D.

From this initial automaton, we iteratively perform
transformation operations to improve the MDL score.
At each iteration, we test all possible transformation
operations (merge, deletion, and split) at every position
in the automaton. The words are corrected given the
new model, and then the MDL score is computed. The
transformed automaton leading to the greatest gain in
MDL is kept as new base model for the next iteration.
If no operation improves the MDL score, the algorithm
stops and outputs the automaton with maximal score.

6 Experiments

Throughout the experiments, we are interested in the
following questions: to which extend is TADAM robust
to noise in the data; how well does it compare to
state-of-the-art TA learners; how competitive is it to

1https://github.com/Fos-R/TADAM

Algorithm 2 TADAM

Require: Input sample of timed sequences D
Ensure: A pRTA Â partially consistent with D
1: Â ← initTA(D)
2: repeat
3: candidates← ∅
4: for all operation do
5: for all target in Â do
6: A ← transform(Â, operation, target)
7: candidates← candidates ∪ {A}
8: A′ ← argminA∈candidates L(A) + L(D|A)
9: gain← L(Â) + L(D|Â) - L(A′)− L(D|A′)

10: if gain > 0 then
11: Â ← A′

12: until gain ≤ 0
13: return Â

other methods on real-world problems. We address
the two first questions with an experiment on synthetic
data. We then present applications on real data with
classification and anomaly detection tasks.

6.1 Experimental Setup We first describe how we
generated synthetic data, and then present the setup for
the real-world experiments.

6.1.1 Synthetic Data We generated 35 random tar-
get timed automata as data generating process. To en-
sure a diversity in the target automata, we considered
different values of number of locations (from 5 to 50),
of alphabet size (5 to 20), and of outdegree (from 1.25
to 2). For each target automaton, we generated a set
of timed words. We then injected noise in the timed
words, affecting up to 50% of the pairs (a, d) accord-
ing to the noise model defined in Sec. 4.1 to constitute
the training sample Dtrain for TADAM and its com-
petitors. We considered the following levels of noise n:
0, 0.001, 0.005, 0.01, 0.025, 0.05, 0.1, 0.15, 0.2, 0.3,
0.4, and 0.5. We set the default training sample size to
500, nevertheless, we also considered different training
sample sizes (from 100 to 1000) for 5 of the target au-
tomata (with the following default characteristics: 14 lo-
cations, 10 symbols, and an outdegree of 1.25). For the
evaluation, we also generated test sets of timed words
D+

test and D−
test with, respectively, words accepted by

the target automaton, and words from the target but
with added noise and thus not accepted anymore. Note
that words from D−

test may also belong to Dtrain where
n ≥ 0.

To evaluate the 600 timed automata learned by the
TADAM (and its competitors), we computed the recall,
precision, and F1-score using Dtest. We also computed
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the Jaccard distance between the untimed language of
the target and the learned automata, which measures
their similarity without taking into account the word
probabilities. We also computed the Jensen-Shannon
divergence between the untimed word distribution in
the languages of the target and learned automata.

We also conducted an ablation study on TADAM
using the automata generated with default values. We
tested different initialization strategies, and removed
the transformation operations one by one.

6.1.2 Classification We performed a classification
task on network traffic, based on the ISCXVPN2016
dataset [6]. In the raw network captures, there are four
classes of network traffic: chat, email, streaming, and
VoIP. A usual method to classify such data relies on
network flow descriptive features, such as number of
packets, data rate, etc. We relied on the NTLFlowLyzer
software to extract these features. Due to issues with
it, we had to leave out some of the original dataset
classes. We split the traffic into a training set (with
80% of data) and testing set (with 20% of data). The
symbols are formed from the TCP flags, the message
directions, and an indicator of the payload, leading to
an alphabet with 23 symbols. We created one word
per communication flow between two IP addresses, each
packet corresponding to a pair (symbol, payload size).

We used a Random Forest on the network flow
features as a domain-specific baseline. For the TA
learning methods, TADAM, TAG and RTI+, we
learned one automaton per class. To predict a class with
an automaton, we consider the most likely automaton
given a timed word.

6.1.3 Anomaly Detection We conducted an
anomaly detection experiment in a collection of HDFS
message logs [20]. The HDFS (Hadoop Distributed
File System) is a storage system designed to distribute
and manage large datasets across multiple machines
in a Hadoop cluster. The dataset contains 29 different
kind of messages (received data, failed to transfer,
etc.). To obtain timed words, we used the message
type as symbol and the delay between two messages
as time value. We randomly selected 1,000 traces
labelled as normal among the 575,061 available traces
to constitute the training sample D. Using the learned
timed automaton, we then computed the probability
of the remaining traces (557,223 normal and 16,838
abnormal) to perform the anomaly detection.

6.2 Validation on Synthetic Data We report in
Table 1 the average F1-score, precision, recall and
execution time over all data. TADAM significantly

Learner F1 Precision Recall Time (s)

TADAM 0.884 0.849 0.938 1649
TAG 0.803 0.756 0.878 267
RTI+ 0.783 0.837 0.763 0.4

Table 1: Global learning performance of our method
and its competitors.

outperforms TAG and RTI+ by reaching a high recall
(the TA accept most true words from the target model)
while keeping a high precision (they reject most words
where noise was injected). These performances come at
a price of a longer execution time (TADAM and TAG
are implemented in Python while RTI+ in C++).

6.2.1 Noise Robustness We show the impact of the
noise ratio on the learned models in Fig. 3. We pro-
vide the full results for the other metrics in the ap-
pendix. While TAG and RTI+ are immediately im-
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Figure 3: Impact of the noise proportion in the training
data on the learned models.

pacted by the presence of noise even in a small pro-
portion, TADAM shows more robustness. The Jaccard
distance computed between the untimed languages of
the learned model and the target increases more pro-
gressively for TADAM than its competitors, showing
that it has successfully rejected noisy words. The num-
ber of edges, which is an indicator of the size of the
learned models, remains small. The recall drop of TAG
and RTI+ is a symptom of their inability to generalize
over the available learning data due to the noise. For
TADAM, there could also be a risk to recognize less
true words due to inopportune deletions. The empirical
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results suggests that this phenomenon is limited.

6.2.2 Ablation Study We tested different initializa-
tion strategies: the tree-shaped prefix automaton, the
universal automaton, or our Markov initialization. The
results confirm the latter is the most appropriate for
TADAM. When initialized with the prefix automaton,
the runtime quickly skyrockets due to the number of
operations to test and of merges needed. The univer-
sal automaton is not ideal either, because splitting this
single location becomes increasingly complicated as n
grows, due to the lack of clear structure in the data.

Running TADAM by removing the transformation
operations one by one shows that the most important is
the deletion. It is not surprising as this operation brings
robustness to noise and induces the word correction
process. The other operations appear less critical as our
initialization ensures a compact automaton with high
mutual information between successive symbols.

6.3 Real-world Applications We now present the
results of using the learned timed automata to classify
network data and detect anomalies.

6.3.1 Classification We report the classification re-
sults in Table 2. TADAM performs slightly better than
TAG, though both fall short compared to the domain-
specific baseline that achieved a F1-score of 0.720. As
in the previous experiments, RTI+ shows significantly
lower performance, close to random guess (that would
have about 20% accuracy). The feature importance
analysis from the Random Forest reveals that high-level
metrics, such as average rate of data or the number
of certain events, are important for classification. Au-
tomata lack the capacity to express this kind of metrics.
Finally, TADAM exhibits very little overfitting, achiev-
ing similar results on train set and test set, unlike TAG.

Train set Test set

Learner Accuracy Accuracy F1

TADAM 0.607 0.617 0.494
TAG 0.672 0.585 0.486
RTI+ 0.260 0.255 0.197

Table 2: Classification performance of TA learners on
ISCXVPN2016. We report the accuracy on the train
and test sets, and the mean F1-score on test set.

6.3.2 Anomaly Detection We present the results
on the anomaly detection task in Table 3. Although
we do not achieve the performance levels of state-of-

Learner AU-ROC TPR FPR F1

TADAM 0.982 0.998 0.025 0.705
TAG 0.891 1 0.142 0.298
RTI+ 0.790 1 0.292 0.171
HMM 0.608 0.640 0.085 0.288

Table 3: Anomaly detection performance on HDFS v1
dataset. We report the TPR, FPR and F1-score for the
threshold maximizing TPR-FPR.

the-art techniques for log-based anomaly detection, in
particular deep learning techniques such as CNN or
LogRobust for which F1-score over 0.98 are reported [9],
our results are promising. Indeed, the rate of false
alarms (FPR) of our learned model is low and its rate
of detection (TPR) very high. The learned automaton
still demonstrates a strong ability to detect anomalies,
despite that learning data was both noisy and limited,
and that no adaptation was made for this task. The
advantage of the noise robustness becomes evident
when we compare our performances with the other TA
learners. We also learned an Hidden Markov Model
(HMM) as this family of probabilistic models is also
used for log structure learning and anomaly detection
[10]. However, HMMs clearly lack the expressiveness
needed for effective discrimination in this task.

7 Conclusion

We present TADAM, a TA learning algorithm from
noisy observational data. Traditional passive TA learn-
ers struggle with noise, as they attempt to construct
models that strictly align with all observations, resulting
in overly complex models with poor generalization. We
address this issue by introducing a data correction strat-
egy that selects the most appropriate edit operations to
modify a timed word such that it is accepted by a given
timed automaton. Based on this strategy, we propose
a two-part MDL encoding and a greedy algorithm to
learn a TA by balancing the complexity of the model
with the fit to noisy data. Experiments on synthetic
data demonstrate that TADAM is significantly more
robust to noise than existing methods, producing com-
pact and interpretable models that remain faithful to
the true data generation process. In addition, real-world
experiments highlight the practical utility of the learned
automata for tasks such as classification and anomaly
detection. This work open new application perspectives
for timed automata that can now be more easily inferred
from real data. This learning approach could also be ex-
tended to other formalisms, such as pushdown automata
that can model different phenomena.
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A Proofs

In Section 4.3, we state that: ∑
(o,e,d)∈

R{tr,fo,ad}

− log(p(e | qs(e))) = |R{tr,fo,ad}| ·H(E | qs(E))

Here is the proof of that claim:∑
(o,e,d)∈R{tr,fo,ad}

− log(p(e | qs(e))) = −
∑
e′∈E

∑
(o,e,d)∈R{tr,fo,ad}

1[e′ = e] log(p(e′ | qs(e′)))

= −
∑
e′∈E

log(p(e′ | qs(e′)))
∑

(o,e,d)∈R{tr,fo,ad}

1[e′ = e]

= −
∑
e′∈E

log(p(e′ | qs(e′)))|R{tr,fo,ad}|p(e′)

= −
∑
e′∈E

log(p(e′ | qs(e′)))|R{tr,fo,ad}|
p(qs(e

′), e′)

p(qs(e′) | e′)

= −
∑
e′∈E

log(p(e′ | qs(e′)))|R{tr,fo,ad}|p(qs(e′), e′)

= |R{tr,fo,ad}|H(E | qs(E))

In Section 5.2.3, we state that:

|R{tr,fo,de}| · (HA2(D | E)−HA1(D | E)) = −|Rq
{tr,fo,de}| · IA1(D; f(E−1) | E)

Here is the proof of that claim:

|R{tr,fo,de}| · (HA2
(D | E)−HA1

(D | E)) = |R{tr,fo,de}| · (HA2
(D)− IA2

(D;E)−HA1
(D) + IA2

(D;E))

= |R{tr,fo,de}| · (IA1
(D;E)− IA2

(D;E))

= |Rq
{tr,fo,de}| · (IA1

(D;E|qs(E) = q)− IA2
(D;E|qs(E) = q))

= |Rq
{tr,fo,de}| · (IA1

(D;E|qs(E) = q)− IA1
(D;E, f(E−1)|qs(E) = q))

= −|Rq
{tr,fo,de}| · IA1

(D; f(E−1)|E, qs(E) = q)

We exploit the fact that HA1
(D) = HA2

(D) (because the definitions of A1 and A2 do not change the
observation of D). The passage from line 2 to 3 is motivated by the fact that IA1

(D;E) = IA2
(D;E) for all

sequences of symbols and delays except those whose source locations of the triggered edges are q, because A1 and
A2 only differ for these edges.
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Figure 4: Full results of the synthetic data experiment showing the impact of the noise proportion in the training
data on TADAM and its competitors.

B Synthetic Data Experiment

B.1 Robustness to Noise We present in Fig. 4 the full results of the synthetic data experiment.

B.2 Ablation study We first present in Fig. 5 the experimental results for TADAM with different
initialization strategies. We either used the classical tree-shaped prefix tree strategy, the universal automaton (a
single location with one self-transition per symbol in Σ), or our Markov initialization (one location per symbol).
When initialized with the prefix automaton, the runtime quickly skyrockets. From a noise proportion n of
0.025, it starts to exceed 6 hours (we stopped the learning process after these 21600 seconds) due to the number
of operations to test and of merges needed. There is also an increased risk of inopportune deletions because
deleting a whole subtree will greatly reduce the model cost and it might exceed the increase in data cost on small
datasets. In one of the cases, it happened from n = 0.05. When initialized with the universal automaton, the
only possible operations are the deletion of a transition (improbable at this stage as it would affect all the words
have the corresponding symbol), or a split. As the noise proportion rises, less splits appear to be interesting,
and no transformation is performed. From n = 0.2, the performances dropped in comparison to our proposed
initialization. In conclusion, the automaton with a single location per symbol seems to be the best initialization
strategy for TADAM.
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Figure 5: Results of the ablation study on TADAM’s transformation operation. The prefix tree initialization
caused the learning process to fail due to a learning time exceeding 6 hours (failed cases: 0/20 for n ∈ [0, 0.01],
1/5 for n = 0.025, 2/5 for n = 0.05, 9/15 for n ∈ [0.1, 0.2], 15/15 for n ≥ 0.3).

We also run TADAM without the possibility to perform either merges, splits, or deletions and present the
results in Fig 6. Without the merges, the performances in terms of word acceptance are not significantly different.
However, the learned automata are bigger (up to twice as much edges), resulting in a higher runtime (more
transformation targets). Without deletions, TADAM unsurprisingly looses its robustness to noise. The average
F1-score falls below 0.7 from n = 0.05. Without splits, we get slightly worst results. The low difference might be
explained by the moderate complexity of the target automata.
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Figure 6: Results of the ablation study on TADAM’s transformation operation.
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