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Abstract

Identifying causal relationships is a corner-
stone task in science, but most data-driven
methods offer ambiguous results or require
restrictive assumptions. Recent work on the
basis of information theory shows promising
results across many domains, but leaves open
how to provably identify causal graphs. Here,
we develop a general information-theoretic
framework called Topic for causal discov-
ery in topological order. Topic is based on
the universal measure of Kolmogorov com-
plexity and is fully identifiable. We show
that Topic’s guarantees extend to both the
i.i.d. and non-i.i.d. continuous settings. Our
evaluations on continuous, time series, and
interventional data show that Topic, us-
ing domain-specific approximations of Kol-
mogorov complexity, learns faithful topologi-
cal orderings and frequently outperforms spe-
cialized methods.

1 INTRODUCTION

Answering causal questions is a central part of scien-
tific inquiry. Understanding causal pathways in biolog-
ical systems, for example, is important to reason about
interventions on such systems, such as modern gene
editing technologies [Dominguez et al., 2016]. How-
ever, effective discovery of causal networks from ob-
servational data only [Pearl, 2009] remains an ongoing
challenge.

Methods for causal discovery use conditional indepen-
dence tests [Spirtes et al., 2001] or greedy score-based
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search [Chickering, 2002], but these can only infer the
underlying causal graph up to the Markov equivalence
class. Additional assumptions on the causal model are
necessary to obtain a fully oriented Directed Acyclic
Graph (DAG). Prior work [Bühlmann et al., 2014,
Zheng et al., 2018] usually considers single-domain set-
tings under restrictive assumptions, such as continuous
additive noise models [Peters et al., 2014].

In addition, real-world data is often not identically
distributed (i.i.d.) but instead heterogeneous or non-
stationary. For example, in gene knockdown or over-
expression experiments in biology, targeted interven-
tions change the expression of certain genes, resulting
in non-i.i.d. datasets [Meinshausen et al., 2016]. These
settings require yet again specialized methods and as-
sumptions to discover causal networks [Huang et al.,
2020, Squires et al., 2020, Perry et al., 2022].

In this work, we explore an information-theoretic ap-
proach to causal discovery. It takes inspiration from
the principle of algorithmically independent mecha-
nisms [Janzing and Schölkopf, 2010], which postulates
that the true causal model compresses the data most
effectively. Using this principle, methods for various
i.i.d. [Compton et al., 2020, Xu et al., 2022, Jalal-
doust et al., 2022] and non-i.i.d. settings [Mameche
et al., 2023] have proved effective. Currently, however,
there is limited research [Mian et al., 2021] on integrat-
ing information-theoretic scores into a general search
framework for Directed Acyclic Graphs (DAGs).

To this end, we propose Topic, a unified framework
for information-theoretic causal discovery. Topic is
inspired by the universal concept of Kolmogorov com-
plexity and, using domain-specific scores, applicable
to both the i.i.d. and non-i.i.d. settings. We derive
an approach that proceeds in a topological order of
the true graph and subsequently discovers fully ori-
ented causal graphs. We show under which condi-
tions Topic is generally identifiable and then examine
identifiability for two specific instantiations, one as-
suming i.i.d. causal additive models, the other based
non-i.i.d. settings with mechanism shifts.
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We evaluate Topic in continuous and time-series,
i.i.d. and non-i.i.d. simulations and on real-world lung
cancer data [Statnikov et al., 2015]. We find that
Topic performs favorably to domain-specific meth-
ods, showcasing its flexibility and efficacy as an
information-theoretic framework for causal discovery.

2 PRELIMINARIES

We first describe our setting and the information-
theoretic causal discovery ideas we will use.

2.1 Problem Setup

Given a set of variables X ∈ X p with domain X = R,
we are interested in the underlying causal structure in
the form of a directed acyclic graph (DAG) G that dic-
tates how the data is generated in terms of causes and
effects. That is, we assume that the joint distribution
PX is Markov w.r.t. a DAG G with nodes 1, . . . p and
edges (Xi, Xj) in G whenever Xi is a direct cause of
Xj . We denote the direct predecessors of a node Xj in
G as paG

j . Throughout, we assume causal sufficiency,
i.e., no unobserved common causes exist for any pair
Xi and Xj . We refer to Lauritzen [1996] and Pearl
[2009] for a formal introduction to Markov properties
as well as d-separation in graphs.

We distinguish between two settings. In the homoge-
neous setting, we obtain an i.i.d. sample X ∈ Rp×n

with n samples, respectively a time series sampled at
n discrete time points. In the heterogeneous setting,
we obtain multiple i.i.d. datasets C = {X1, . . . , Xm}
which we refer to as contexts c. Each context c can
differ in distribution P c due to mechanism shifts of a
set of nodes I∗c , that is,

P c
X1,...,Xp

=
∏
i ̸∈I∗

c

PXi|paG
i

( ∏
i∈I∗

c

P c
Xi|paG

i

)
,

As is common, we hereby assume that there is a fixed
underlying causal graph G∗ in all contexts and inter-
ventions modify the conditionals. Our goal in both
settings is to infer from data a graph G equal to G∗.

2.2 Information-Theoretic Causal Discovery

Inferring causal structures using purely statistical no-
tions of independence is limited to Markov Equiv-
alence classes of G [Hauser and Bühlmann, 2013].
To offer stronger identifiability guarantees, we turn
to information-theoretic measures of independence, in
particular, the algorithmic mutual information (AMI)
[Chaitin, 1975]. It is defined through the Kolmogorov
complexity K, which defines a complexity of an object
with string description x ∈ {0, 1}∗ as the length K(x),

in bits, of the shortest program that generates x on
a universal Turing Machine which then halts [Li and
Vitányi, 2009]. For two binary strings x and y, the
algorithmic mutual information is given by

IA(x; y) = K(x) +K(y)−K(x, y) .

When strings x, y are independent and provide no ad-
vantage in compressing them together, the AMI tends

to zero, i.e., IA
+
= 0 holds up to a program of constant

length. One can extend the definitions of K and IA to
distributions, as well as define a conditional version as
IA

(
PX ;PY | PZ

)
= K

(
PX | PZ

)
−K

(
PX | PY , PZ

)
.

3 FRAMEWORK

We now introduce our Topic framework for
Topological Ordering Based Information-Theoretic
Causal Discovery. A topological order is defined as a
unique node mapping function T = V → {1, . . . , p},
where for all edges (X,Y ) in the true graph G∗ :
T (X) < T (Y ). Furthermore, we consider partial topo-
logical orders T k, where only the first k nodes have
been assigned a position. We denote that a node X is
not yet assigned to a topological order by T (X) = −1.

To infer a causal graph, we use an oracle Ω that it-
eratively provides the next node in a valid topolog-
ical order. Given a partial topological order T k−1

and a partially inferred graph G up to the k-th node,
i.e. ∀(X,Y ) ∈ G∗, T k(X) < k : (X,Y ) ∈ G, the oracle
Ω(G,T k−1) returns a node Z such that T (Z) = k is in
accordance with the true graph G∗. We now show how
to infer the true graph G∗ using the oracle Ω, and then
how to create the oracle itself based on information-
theoretic principles.

3.1 Algorithm

Topic initializes the inferred graph G with no edges
and an empty topological order T 0 with k = 1. We
iterate once per node for a total of p times, where for
each iteration k we perform in order

1. Call the oracle Ω
(
G,T k−1

)
to obtain the next node

X with T (X) = k.

2. Add all outgoing edges (X,Y ) to G that compress,
i.e. add edges (X,Y ) for which T (Y ) > k and

K
(
PY | paGY ∪X

) +
< K

(
PY | paGY

)
.

3. Remove all incoming edges (Z,X) that are redun-
dant, i.e. remove (Z,X) from G for which

K
(
PX | paGX ∪ Z

) +
= K

(
PX | paGX

)
.
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We will now show under which conditions Topic infers
the true graph G∗.

Assumption 3.1. [Faithfulness] Given p random
variables with true causal graph G∗, a pair of variables
X and Y is algorithmically independent conditioned on

a set of variables Z, i.e. IA(PX ;PY | Z)
+
= 0, if and

only if they are d-separated in G∗.

Faithfulness is a standard assumption in causal dis-
covery. Here, it implies that a true edge (X,Y ) ∈ G∗

always compresses, i.e.

∀G, (X,Y ) /∈ G : K
(
Y | paGY ∪X

) +
< K

(
Y | paGY

)
,

as there is no parent set without X that could d-
separate X and Y . Therefore, by testing all outgoing
edges, we have perfect recall of all true edges, i.e. after
iteration k, ∀(X,Y ) ∈ G∗, T (X) ≤ k : (X,Y ) ∈ G.

Next, we deal with the fact that whilst the recall is
perfect, the precision may not be, in other words false
positive edges may be added to G. To this end, we test
all incoming edges for redundancy in Step 3. Under
Algorithmic Independence of Conditionals, it is guar-
anteed that all false positive edges are pruned.

Assumption 3.2. [Algorithmic Independence of Con-
ditionals] The distribution of two random variables X
and Y conditioned on their true causal parents in G∗

is algorithmically independent , i.e.

IA
(
PX|pa∗

X
;PY |pa∗

Y

) +
= 0 .

Assumption 3.2 states that any pair X and Y condi-
tioned on their true parents is algorithmically indepen-
dent. An equivalent reformulation thereof is that the
total Kolmogorov complexity of the joint distribution
PX1,...,Xp

is equal up to an additive constant to the
Kolmogorov complexity of each variable conditioned
on its true parents.

Hence, we can reduce a set of nodes paGX to the
true parents pa∗X by removing all redundant par-
ents, i.e. parents that do not compress, provided that
paGX ⊇ pa∗X . This is ensured through faithfulness, as
we have perfect recall of all true edges. By pruning all
incoming edges in Step 3 that do not compress, we are
left with the true parents pa∗X .

Theorem 3.3. [DAG Identifiability] Under the Al-
gorithmic Independence of Conditionals and Faithful-
ness, given an oracle Ω, Topic recovers the true causal
graph G∗.

We provide a proof of Theorem 3.3 in Appendix A.2.
Initially, the conditions of the oracle Ω are met by
a source of G∗, which is guaranteed to exist for a
DAG. Faithfulness ensures that Topic identifies all

X Y Z X Y Z

X Y Z X Y Z

True graph G∗ Iteration 1

Iteration 2 Iteration 3

Add edge Prune edge

Figure 1: Discovery of a chain G∗. Topic proceeds in
topological order (X,Y, Z) and adds edges that com-
press (green) and prunes edges that are redundant and
hence no longer compress (red).

true edges, which in turn allows us to use the oracle
again and advance one step further in the topological
order. The Algorithmic Independence of Conditionals
ensures that paGX is pruned to pa∗X for node X with
T (X) = k so that we are left with the true graph G∗.

We illustrate the Topic algorithm in Figure 1 for a
chain X → Y → Z. Using Ω, we identify the source
of the graph X. From X, we add the edge (X,Y ) as
it compresses, as well as the false positive edge (X,Z)
due to the information flow from X to Z. Now, G
contains all true parents of Y , so that Ω identifies Y
as the next node. For Y , we add the edge (Y, Z) as it
compresses. Finally, we arrive at Z, where we prune
the false positive edge (X,Z), since (Y,Z) is sufficient
to explain Z per Assumption 3.2. Thus, Topic has
correctly identified the true causal chain X → Y → Z.

3.2 Oracle

The oracle Ω is the key to Topic’s identifiability guar-
antees. We now show that using Kolmogorov Com-
plexity we can not only add and remove causal edges,
but also identify a node for which all true parents have
been accounted for, and which is thus eligible to be
next in the topological order.

We base our oracle on the compression gain of an edge
(X,Y ) in graph G, defined as

g(X,Y ;G) = K
(
PY | paG

Y

)
−K

(
PY | paG

Y ∪ {X}
)
.

The gain quantifies the amount of information that is
saved by adding the edge (X,Y ) to the graph G. In-
tuitively, the compression gain in the causal direction
outweighs the one in the anti-causal direction. Hence,
we construct the oracle Ω(G,T k−1) as follows

argmax
T (X)=−1

(
min

T (X)=−1
g(X,Y ;G)− g(Y,X;G)

)
. (1)
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Above we compare, for all not yet covered nodes X
and Y (T (X), T (Y ) = −1), the compression gain of
the edge (X,Y ) with the gain of the edge (Y,X). The
delta ∆X,Y (G) = g(X,Y ;G) − g(Y,X;G) > 0 indi-
cates that X is a parent/ancestor of Y , i.e., X com-
presses Y better than vice versa, provided no unac-
counted confounders are present. By taking the node
X with the maximal worst-case ∆ we isolate that node
for which no parents are unaccounted for in G, so that
setting T (X) = k is valid with regard to G∗.

Assumption 3.4. [Information-Theoretic Identifia-

bility] Let X be a resolved node of G, i.e., paG
X = pa

G∗

X ,
and Y be a descendant of X in G∗. If all confounders
of X and Y are accounted for in G, i.e., paGY ⊇
(pa∗X ∩ pa∗Y ), then it holds that

IA
(
PX | paG

X ; PY | paG
Y ∪ {X}

)
+
< IA

(
PY | paG

Y ; PX | paG
X ∪ {Y }

)
.

Assumption 3.4 states that information in the causal
direction (X,Y ) is better compressed than in the anti-
causal direction (Y,X), provided that all parents of X
and joint confounders are accounted for. It ensures
that the oracle Ω selects a node X, for which paGX =
pa∗X . Then the delta to any node Y , which has to be
a descendant or independent of X, is positive, i.e.,

g(X,Y ;G)
+
≥ g(Y,X;G)⇔ ∆X,Y (G)

+
≥ 0 .

On the other hand, if there is a parent Z ∈ pa∗X of X
that is not accounted for in G with T (Z) ≥ k, then the
delta ∆X,Z(G) is negative, i.e., ∆X,Z(G) < 0. The or-
acle Ω thus selects a node X for which it is guaranteed
that all parents are accounted for in G, and which is
thus eligible to be next in the topological order.

Theorem 3.5. Under Assumption 3.4, the oracle Ω
returns a node X for which paGX = pa∗X and T (X) = k
is valid with regard to G∗ provided that G contains all
edges up to the k-th node.

We provide a proof of Theorem 3.5 in the Appendix
A.3. It outlines general conditions under which the
oracle is provably correct. In Sections 4, we show un-
der which conditions the information-theoretic identi-
fiability as per Assumption 3.4 holds for specific causal
models in the continuous i.i.d. and non-i.i.d. settings.

3.3 Score

Lastly, we discuss how to overcome the uncomputabil-
ity of the Kolmogorov Complexity using lossless com-
pression algorithms. Minimum Description Length
(MDL) [Grünwald, 2007] is a statistically sound ap-
proximation from above to Kolmogorov Complexity.

Two part MDL separates it into model complexity
L(M), which measures the cost of parameters in bits,
and the cost of encoding the data with said model
L(D | M). In causality, MDL is used to great success
for the continuous [Marx and Vreeken, 2017], discrete
[Budhathoki and Vreeken, 2018] and time series do-
mains [Jalaldoust et al., 2022] amongst others. The
goal to minimize the description length as an upper
bound to the Kolmogorov Complexity as

K (P ) ≤ L(M) + L(D |M) .

The MDL principle automatically balances the trade-
off between model complexity and data fit. In practice,
we use MDL to substitute the Kolmogorov Complex-
ity in the score g(X,Y ;G). Marx and Vreeken [2022]
show that in the limit of n→∞, an appropriate two-
part MDL score on expectation gives the same infer-
ence results as one that has access to the Kolmogorov
Complexity itself.

Significance. In addition, MDL allows for seam-
less integration of significance testing for causal edges.
The no hyper-compression inequality [Grünwald, 2007]
shows that the probability of obtaining a compression
gain of t bits due to chance is less than 2−t. This
allows us to determine whether a gain is significant
at level α by converting it into a practical threshold,
t = − log2(α). Assume we have a model M and we
add an edge to it to form M ′. If the cost of the new
model L(M ′) + L(D | M ′) < L(M) + L(D | M) − t,
then the gain is significant and the edge will be added
to the graph G. In practice, this helps us to avoid
adding false positive edges due to limited samples.

4 INSTANTIATION

In the following, we justify how we instantiate the or-
acle Ω and the corresponding edge score g in our do-
mains of interest. In particular, we examine specific
causal models for which we can guarantee information-
theoretic identifiability as in Assumption 3.4.

4.1 Homogeneous Domain

Assumption 4.1. [Additive SCM] We consider a
structural causal model where each variable Y is gen-
erated as a sum of its parents and noise as per

Y =
∑

X∈pa∗
Y

fX,Y (X) +NY . (2)

Additive SCMs are a common assumption in the lit-
erature [Peters et al., 2017] and their identifiability
is well studied [Shimizu et al., 2006, Hoyer et al.,
2008]. In particular, only in the causal direction one
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can separate the effect Y into a function of the cause
f(X) and an independent noise term NY , whereas in
the anti-causal direction no such decomposition exists
(apart from the linear Gaussian case). This indepen-
dence of cause and effect given the cause implies that

IA(PX ;PY | X)
+
= 0, whilst in the anti-causal direction

no such independence holds, i.e. IA(PX | Y ;PY )
+
> 0.

To ensure the guaranteed correctness of the oracle Ω,
the independence in causal direction and dependence
in anti-causal direction resp. has to hold for a re-

solved node X of G, i.e. paG
X = pa

G∗

X . For an additive
SCM as per Eq. (2), we show in the Appendix A.4
that the model in the causal direction corresponds to
a post-nonlinear model, which is known to be identifi-
able apart from certain pathological cases [Zhang and
Hyvärinen, 2009, Peters et al., 2014].

Theorem 4.2. Under the additive SCM as per
Eq. (2), any descendant Y of a resolved node X with

paG
X = pa

G∗

X can be expressed as a post-nonlinear
model of X, where Assumption 3.4 holds if the post-
nonlinear model is identifiable.

Implementation. In practice, we model the local
functions fX,Y using cubic splines, where we denote
the parameters as θX,Y . Cubic splines are well versed
in smoothly approximating non-linear functions and
used in the state-of-the-art causal discovery methods
[Bühlmann et al., 2014, Mian et al., 2021]. We now de-
scribe the corresponding MDL score for use in Topic.

We start by encoding the model L(M). It consists of
the causal graph G and the local functions θX,Y . We
assign each parameter of a spline θX,Y a constant cost
of r bits, i.e. L (θX,Y ) = r · ||θX,Y ||0, and each edge of
the graph G also a cost of r bits, i.e. L (G) = r · ||G||0,
where we choose r = 2 akin to the Akaike Information
Criterion [Akaike, 1974]. To encode the data under
the model, i.e. L(D |M), we model the residual noise
using a Gaussian p(r) ∼ N (0, σ2), as

ri = yi −
∑

X∈paGY

f̂X,Y (xi) , L(D |M) =

n∑
i=1

log(p(ri)) .

We thus approximate the Kolmogorov complexity of a
variable K(Y | paGY ) as

≈
∑

X∈paGY

r · (||θX,Y ||0 + ||paGY ||0) +
n∑

i=1

log(p(ri)) .

We instantiate Topic in the continuous domain us-
ing this MDL score to compute ĝ, and compare
it to state-of-the-art methods in Section 6. As a
framework, Topic seamlessly accommodates different
model classes resp. scores, and can even be employed
for non-i.i.d. data, as we will show next.

X

C

Y Z X Y Z

X Y Z X Y Z

True graph G∗ Candidate 1

Candidate 2 Candidate 3

Causal edge Noncausal edge

Figure 2: Discovery of G∗ in heterogeneous settings.
Given data with mechanism shifts (gray), Topic se-
lects sources that need few, independent shifts (green)
avoiding those that lead to dependent shifts (red).

4.2 Heterogeneous Domain

We now consider the setting with data from different
environments. For that, let us revisit the causal chain
shown in Fig. 2. We now observe X, Y and Z in
multiple contexts, in one of which a causal mechanism
change for X occurs (gray). For example, consider an
(idealized) scenario where variables represent gene ex-
pression levels measured in different conditions, and
a knock-down intervention affects gene X in one con-
dition, represented by a categorical variable C. As
no interventions affect the remaining variables, their
generating process remains the same in all contexts
(white) when we include causal edges (top row). In
contrast, when the causal edge is not included (bot-
tom row), Y and C are no longer d-separated in G∗.
Considering either Y or Z as a source will, therefore,
introduce an additional mechanism change (gray).

We first show that this observation extends to larger
graphs. To this end, we require the following faithful-
ness assumption that true mechanism changes show in
the observed distributions.

Assumption 4.3. [Shift Faithfulness] For each i and
any two environments c, c′, when i ∈ I∗c′ , then

P c
Xi|paG

i
̸= P c′

Xi|paG
i
.

Under this assumption, we can show that the observa-
tion in Fig. 2 generally holds for any resolved node X
and variables Z downstream from X.

Lemma 4.4. [Path Shifts] Given a resolved node X
and node Z with a directed path from X to Z in G∗,
when Assumption 4.3 holds, PX|Z and PZ both reflect
the true mechanism changes of X,

P c
X|paG

X
̸= P c′

X|paG
X
⇒ P c

Z ̸= P c′

Z
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and similarly for PX|Z for all pairs c, c′.

The above suggests that the misdirected edge X ← Z
results in additional mechanism changes and hence
worse compression, therefore we can extend our score
ĝc and oracle Ω to accommodate data from multiple
contexts. Given a partially inferred graph G and esti-
mated intervened nodes I, we extend our score as

ĝ(X,Y ;G, I) = ĝ(Xo, Y o;G)+
( ∑

c:Y ∈Ic

ĝ(Xc, Y c;G)
)
.

Hereby we apply the score separately to contexts with
changed conditionals and jointly to all remaining con-
texts, here denoted as Xo, Y o.

To guarantee that this score can be used to identify
sources, our central assumption is the following.

Assumption 4.5. [Independent Mechanism Shift] We
assume that causal mechanism shifts occur indepen-
dently,

I
(
P c
X|paG

X
̸= P c′

X|paG
X

)
⊥⊥ I

(
P c
Y |paG

Y
̸= P c′

Y |paG
Y

)
across any two contexts c ̸= c′ for all i ̸= j.

We also need to ensure that not all variables un-
dergo shifts in all environments, respectively, that
some shifts do exist. For a pair of contexts c, c′, denot-
ing the probability that mechanism change for node i
occurs as

pc,c
′

i := P[I
(
P c
Xi|paG

i
̸= P c′

Xi|paG
i

)
= 1] ,

we state this assumption as follows.

Assumption 4.6. [Sparse Mechanism Shift] We as-
sume that the probability pi of a mechanism change
between any two contexts occurring is bounded away
from 0 and 1 for all i.

This assumption was proposed to replace the i.i.d. as-
sumption implicit in standard causal modeling for non-
i.i.d. causal models [Perry et al., 2022].

Theorem 4.7. Under Assumptions 4.3, 4.5 and 4.6,
Assumption 3.4 holds with high probability as |C| → ∞.

Implementation. Instantiating the interventional
variant ĝ needs two components: an observational
score ĝ, as well as a way to estimate the interven-
tion targets I. For the former, we use the MDL-based
score proposed in Section 4.1 for consistency. To infer
intervention targets, we need a means to test condi-
tionals for (in)equality. For this purpose, we leverage
the state-of-the-art Kernel Conditional Independence
Test (KCI) [Zhang et al., 2011a].

5 RELATED WORK

Most approaches in causal DAG discovery can be cat-
egorized along two axes: whether they classify as
constraint- or score-based, with a recent trend towards
continuous optimization; and whether they address a
single i.i.d. dataset or multi-context data, with a recent
shift towards non-i.i.d. settings. As the field is gaining
substantial research attention, we point to the most
prominent approaches here and refer to, e.g., Zanga
and Stella [2023] for an in-depth overview.

Constraint-based. Classical constraint-based meth-
ods include the well-known PC algorithm [Spirtes
et al., 2001], which applies with a respective inde-
pendence test in the continuous [Zhang et al., 2011b],
discrete [Marx and Vreeken, 2019] and time series set-
tings [Runge, 2020a]. For instance, PCMCI+ [Runge,
2020b] instantiates PC with the momentary condi-
tional independence test (MCI) to capture time-lagged
causal relationships.

Score-based. Score-based methods such as GES
[Chickering, 2002] employ greedy search over the space
of Markov Equivalence classes of DAGs. To recover all
edge directions, methods such as LiNGAM [Shimizu
et al., 2006] and Resit [Hoyer et al., 2008] assume
an additive noise model and test for non-gaussianity
resp. independence of residuals. The extension Var-
LiNGAM [Hyvärinen et al., 2010] enables causal dis-
covery in the time series domain with a linear model.

Ordering-based. A recent trend is first learning a
topological order and then estimating the fully ori-
ented DAG. Cam [Bühlmann et al., 2014], Score
[Rolland et al., 2022] and NOGAM [Montagna et al.,
2023] topological order estimators for an additive SCM
as in Eq. (2), and then add resp. prune edges
using Lasso regression. For all methods, careful
data-dependent tuning of the Lasso regularizer is re-
quired. Instead, Reisach et al. [2023] propose to use
variance/R2 respectively to determine causal order.
Generally, all frameworks separately deal with edge
selection and topological ordering and are exclusively
applicable to the continuous domain.

Other Methods. Recently, methods based on contin-
uous, neural network-based optimization have gained
popularity. Notears [Zheng et al., 2018] formulates
causal discovery as a continuous optimization task to
learn DAGs, while Yu et al. [2019] propose to use
graph neural networks to learn the causal structure.
Like LiNGAM, Notears has a time series equivalent
called DyNOTEARS [Pamfil et al., 2020], but which
is restricted to linear models only.

Lastly, information-theoretic methods have gained
traction in the field. Gao and Aragam [2021] derive



Sascha Xu◦, Sarah Mameche◦, Jilles Vreeken

0

0.2

0.4

0.6

S
H
D

TOPIC Cam Score Resit LiNGAM Notears Globe

Continuous Causal Discovery

0

0.2

0.4

0.6

F
P
R

3 5 10 15

0

0.2

0.4

0.6

0.8

1

p

d
T
O

P

(a) DAG size

0

0

0.2 0.4 0.6 0.8 1

0

1

pe

(b) Edge density

0

0

250 500 750 1000

0

1

n

(c) Sample size

0

0.2

0.4

0.6

S
H
D

TOPIC PCMCI+ CD-NOD VarLiNGAM

Time Series Causal Discovery

0

0.2

0.4

0.6

F
P
R

5 10 15

0

0.2

0.4

0.6

0.8

1

p

d
T
O

P

(d) DAG size

0

0

250 500 750 1000

0

1

n

(e) Time points

Figure 3: Causal Discovery with TOPIC . On i.i.d. continuous (left) and time series (right) datasets, Topic’s
instantiation learns accurate topological orders (bottom), avoids both spurious and mis-oriented edges (middle),
and thus outperforms domain-specific methods (top).

an entropy-based condition which allows identifiable
causal discovery, but relies on the assumption of a sin-
gle causal parent that is responsible for the majority
of entropy generation. Most related to our work is
the Globe algorithm [Mian et al., 2021] that greed-
ily optimizes an MDL-score. While performing well in
practice, it lacks identifiability guarantees for non-tree
structured graphs.

Multi-Context. For non-i.i.d. data, frameworks
such as CD-NOD offer extensions of constraint-based
methods for multi-context data [Huang et al., 2020,
Mooij et al., 2016] using conditional independence
testing in an augmented graphical model. JPCMCI
[Günther et al., 2023] treats multi-context time series
data in a similar vein while also allowing for tempo-
ral confounders. Meanwhile, UT-IGSP [Squires et al.,
2020] offers a hybrid score- and constraint-based ap-
proach. Although able to give tighter guarantees in
the presence of interventions, the methods only iden-
tify equivalence classes. Recent work therefore lever-
ages the sparse shift principle to discover additional
causal directions [Perry et al., 2022], but does not ad-
dress scalable DAG search.

6 EXPERIMENTS

In the following, we evaluate Topic on three domains:
i.i.d. continuous, time series, and interventional data.

6.1 Experimental Setup

In our synthetic experiments, we generate Erdös-Renyi
DAGs G with p nodes where edges are drawn with
probability pe. For the continuous case, we draw n
samples using the structural model Xi = f(paGi ) +
Ni where f is an additive polynomial function with
additive Gaussian noise Ni ∼ N (0, 1).

For multivariate time series, we generate a Window
Causal Graph (WCG) Gτ with maximum time lag τ
and use the Tigramite package to sample n time-
points as Xt

i = f(pati) + N t
i with non-linear f , addi-

tive Gaussian N t
i , and where pati denotes the causes of

Xt
i in Gτ , which can either be lagged parents Xt

j with
t ≤ τ or contemporaneous Xt

j with j ̸= i for t = 0.

In the non-i.i.d. scenario, we retain the same data gen-
erators and in addition sample i intervention targets
in each of the m contexts. An intervention on node
Xi replaces its structural equation f in the particular
context by a constant c, and we then draw n samples
in m under the updated equation model. Overall, this
results in a parameter configuration (p, n, pe,m, i).

We evaluate the methods in terms of the following
metrics. The Structural Hamming Distance (SHD) is
a standard measure quantifying the similarity of the
true (G∗) and discovered (G) graph. We also report
False Positive Rates (FPR) over directed edges be-
tween node pairs to assess whether the methods find
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anti-causal or spurious edges. We finally evaluate the
correct topological ordering using the topological or-
der divergence dTOP proposed in Rolland et al. [2022],
which counts true edges whose direction strictly dis-
agrees with the discovered topological order T ,

dTOP(T,G
∗) =

∑
i=1,...,p

∑
j:T (i)≥T (j) I[(i, j) ∈ G∗].

We normalize the SHD and dTOP measures to attain
values between 0 and 1 (lower is better).

6.2 Homogeneous Data

We compare against the state-of-the-art methods in
causal DAG discovery shown in Fig. 3, with configu-
ration (p = 8, n = 1000, pe = 0.5) where we change
one data parameter at a time. The methods PC,
FCI, and GES generally performed worse in our ex-
periments such that we omit them from presentation.
Notears and LiNGAM appear with overall worst
performance which we attribute to their strict linear-
ity assumptions. We observe that in terms of the SHD
(top), Resit and LiNGAM perform worse on sparse
graphs, as opposed to Globe and Score who degrade
as the graph becomes dense. Cam achieves close per-
formance to Topic for fully connected graphs, while
in the remaining settings Topic performs best.

In particular, Topic distinguishes itself through a low
false positive rate (middle). Here, the advantage of
automatic model/edge selection through MDL is ap-
parent, compared to the Lasso-based methods Cam
and Score. Only Resit performs well with a similar
false positive rate, but generally learns worse topolog-
ical orders, emphasizing the advantage of topological-
ordering-based approaches. Amongst these, Topic
andCam generally learn more accurate orders in terms
of dTOP than score-matching based Score (bottom).
Particularly, compared to Globe which is also MDL
based, Topic’s inclusion of a topological order leads
to significant improvements in accuracy.

Time Series. In the time series domain, we compare
to PCMCI+, CD-NOD and VarLiNGAM, where
we omit DyNOTEARS from the presentation due to
inferior results. We report the results in Fig. 3d and
3e. Regarding SHD, only PCMCI+ is competitive to
our method, whilst CD-NOD and especially the linear
VarLiNGAM perform worse. For an increasing num-
ber of nodes, Topic remains stable, whilst PCMCI+
degrades, especially with regard to the topological or-
dering (bottom). On the other hand, Topic’s topolog-
ical ordering becomes increasingly accurate with more
sampled time points (right), as there the MDL approx-
imation of Kolmogorov complexity improves. Overall,
Topic is also well versed for time series data and out-
performs specialized methods such as PCMCI+.
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Figure 4: Non-i.i.d. Causal Discovery with TOPIC .
On heterogeneous data, Topic performs well both in
the continuous (left) and time series case (right), with
edge recall increasing in the number of contexts (top).

6.3 Heterogeneous Data

Lastly, we test Topic in the presence of interventions
for both continuous and time series data. We re-
port the results comparing against JPCMCI [Günther
et al., 2023] in the time series domain, as well as
UT-IGSP Squires et al. [2020] and MG-LiNGAM
[Shimizu, 2012] for continuous non-i.i.d. data in Fig. 4.
We find that Topic works very well for continuous
data with mechanism shifts (left), outperforming its
competitors by a wide margin, especially under many
independent mechanism shifts.

In the time series domain (right), JPCMCI is com-
petitive with Topic for few shifts, with the latter per-
forming better in terms of the F1, but worse in terms
of the topological ordering. Again, when the number
of shifts increases, Topic is able to improve its perfor-
mance, while JPCMCI runs into scalability issues due
to its costly conditional independence tests [Runge,
2020b]; this is similarly the case for CD-NOD, which
did not scale beyond m = 5 contexts (left). Over-
all, the empirical results back up Theorem 4.7, which
shows that in the limit of contexts m→∞, the iden-
tifiability condition of Topic is satisfied.

6.4 Real-World Data

To evaluate the practical applicability of Topic, we
now assess its performance on realistic biological data.
The REGED dataset encompasses re-simulated gene
expression levels of lung cancer patients, and includes
three networks with resp. 5, 15 and 500 nodes and a
labeled ground truth DAG [Statnikov et al., 2015]. We
report the results of all methods that could process the
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Figure 5: Experiments on gene regulatory networks.
We report F1 scores of all methods that finish within
2 days. Topic obtains the highest F1 and is the only
method to scale up to 500 variables.

data within two days in Fig. 5.

On the five-node network, Topic, Globe, and
LiNGAM all recover the true graph G∗, whilst Cam,
Score, Resit and Notears achieve F1 scores be-
tween 0.3-0.6 resp. For the 15-node network, Topic
has the highest F1 score of 0.64, with the next best
methods Globe, LiNGAM and Score all scoring
around 0.4. Finally, on the 500-node network, only
Topic was able to finish within the timeout and
achieves an F1 score of 0.5, showcasing the scalability
and accuracy of Topic to large real-world networks.

7 CONCLUSION

We introduced the Topic framework for causal discov-
ery in topological order. Inspired by the universal mea-
sure of Kolmogorov complexity, Topic offers comple-
mentary approaches and identifiability guarantees for
both the i.i.d. continuous and non-i.i.d. multi-context
setting. On synthetic and real-world benchmarks,
Topic outperforms specialized methods on continu-
ous, time series, and interventional data.

Limitations. Topic relies on Kolmogorov complex-
ity, which is uncomputable. To approximate it with
MDL, we have to define a model class and respective
encoding costs. If the real-world data does not adhere
to the assumptions of the model class, the method may
fail to adequately estimate the complexity. Hence, the
resp. instantiation of Topic is sensitive to the choice
of the model class and parameter encoding. Another
limiting factor is the assumption of causal sufficiency
and faithfulness. In practice, both assumptions may
not hold. Consequently, due to the presence of hidden
confounders, the method may infer spurious edges due
to a hidden common cause unobserved in the data.
Furthermore, failure to recall true edges due to a vio-
lation of faithfulness leads to an incomplete graph and
can in the worst case affect the learning of the topo-
logical order.

Future Work. For future work, we plan to em-
ploy Topic in the discrete domain and examine the
identifiability guarantees for the time series setting.
Another promising direction is extending Topic with
MDL-based latent confounding detection, such as by
Kaltenpoth and Vreeken [2019]. In addition, we aim
to relax our assumptions further, e.g., by using triplet
faithfulness [Marx et al., 2021] in place of classic faith-
fulness.
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ner, Chris Russell, Dominik Janzing, Bernhard
Schölkopf, and Francesco Locatello. Score match-
ing enables causal discovery of nonlinear additive
noise models. In International Conference on Ma-
chine Learning, pages 18741–18753. PMLR, 2022.

Francesco Montagna, Nicoletta Noceti, Lorenzo
Rosasco, Kun Zhang, and Francesco Locatello.
Causal discovery with score matching on additive
models with arbitrary noise. In Conference on
Causal Learning and Reasoning, pages 726–751.
PMLR, 2023.

Alexander Reisach, Myriam Tami, Christof Seiler, An-
toine Chambaz, and Sebastian Weichwald. A scale-
invariant sorting criterion to find a causal order in
additive noise models. Advances in Neural Informa-
tion Processing Systems, 36:785–807, 2023.

Yue Yu, Jie Chen, Tian Gao, and Mo Yu. Dag-gnn:
Dag structure learning with graph neural networks.
In International conference on machine learning,
pages 7154–7163. PMLR, 2019.

Roxana Pamfil, Nisara Sriwattanaworachai, Shaan De-
sai, Philip Pilgerstorfer, Paul Beaumont, Konstanti-
nos Georgatzis, and Bryon Aragam. DYNOTEARS:
Structure Learning from Time-Series Data. arXiv
e-prints, art. arXiv:2002.00498, February 2020. doi:
10.48550/arXiv.2002.00498.

Ming Gao and Bryon Aragam. Efficient bayesian net-
work structure learning via local markov boundary
search. Advances in Neural Information Processing
Systems, 34:4301–4313, 2021.

Joris M. Mooij, Sara Magliacane, and Tom Claassen.
Joint Causal Inference from Multiple Contexts.

arXiv e-prints, art. arXiv:1611.10351, November
2016. doi: 10.48550/arXiv.1611.10351.

Wiebke Günther, Urmi Ninad, and Jakob Runge.
Causal discovery for time series from multiple
datasets with latent contexts. In Robin J. Evans
and Ilya Shpitser, editors, Proceedings of the Thirty-
Ninth Conference on Uncertainty in Artificial In-
telligence, volume 216 of Proceedings of Machine
Learning Research, pages 766–776. PMLR, 31 Jul–
04 Aug 2023.

Shohei Shimizu. Joint estimation of linear non-
gaussian acyclic models. Neurocomputing, 81:104–
107, 2012. ISSN 0925-2312.

David Kaltenpoth and Jilles Vreeken. We are not your
real parents: Telling causal from confounded using
mdl. In Proceedings of the 2019 SIAM International
Conference on Data Mining, pages 199–207. SIAM,
2019.

Alexander Marx, Arthur Gretton, and Joris M. Mooij.
A weaker faithfulness assumption based on triple in-
teractions. In Cassio de Campos and Marloes H.
Maathuis, editors, Proceedings of the Thirty-Seventh
Conference on Uncertainty in Artificial Intelligence,
volume 161 of Proceedings of Machine Learning Re-
search, pages 451–460. PMLR, 27–30 Jul 2021.

Joris M. Mooij, Jonas Peters, Dominik Janzing,
Jakob Zscheischler, and Bernhard Schölkopf. Dis-
tinguishing cause from effect using observational
data: Methods and benchmarks. Journal of Ma-
chine Learning Research, 17(32):1–102, 2016. URL
http://jmlr.org/papers/v17/14-518.html.



Information-Theoretic Causal Discovery in Topological Order

Checklist

1. For all models and algorithms presented, check if you include:

(a) A clear description of the mathematical setting, assumptions, algorithm, and/or model. Yes, we provide
a problem description, state all assumptions, provide instantiation details and pseudo code.

(b) An analysis of the properties and complexity (time, space, sample size) of any algorithm. Yes, we
provide a analysis of the complexity of our algorithm.

(c) (Optional) Anonymized source code, with specification of all dependencies, including external libraries.
Yes, we provide all source code and data generators in the supplementary material.

2. For any theoretical claim, check if you include:

(a) Statements of the full set of assumptions of all theoretical results. Yes we state all assumptions in the
main text.

(b) Complete proofs of all theoretical results. Yes we provide both proof overviews in the main paper and
full proofs in the appendix.

(c) Clear explanations of any assumptions. Yes, we provide a detailed explanation of all assumptions when
introducing them.

3. For all figures and tables that present empirical results, check if you include:

(a) The code, data, and instructions needed to reproduce the main experimental results (either in the
supplemental material or as a URL). Yes, we provide all source code and data generators in the sup-
plementary material.

(b) All the training details (e.g., data splits, hyperparameters, how they were chosen). Yes, we describe
how all metrics were computed and hyperparameters for all methods were chosen.

(c) A clear definition of the specific measure or statistics and error bars (e.g., with respect to the random
seed after running experiments multiple times). Yes, we provide confidence intervals of 1 standard
deviation for all presented experiments.

(d) A description of the computing infrastructure used. (e.g., type of GPUs, internal cluster, or cloud
provider). Yes, we run all experiments on a CPU cluster.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets, check if you
include:

(a) Citations of the creator If your work uses existing assets. Yes.

(b) The license information of the assets, if applicable. Yes.

(c) New assets either in the supplemental material or as a URL, if applicable. Yes.

(d) Information about consent from data providers/curators. Not Applicable.

(e) Discussion of sensible content if applicable, e.g., personally identifiable information or offensive content.
Not Applicable.

5. If you used crowdsourcing or conducted research with human subjects, check if you include:

(a) The full text of instructions given to participants and screenshots. Not Applicable.

(b) Descriptions of potential participant risks, with links to Institutional Review Board (IRB) approvals if
applicable. Not Applicable.

(c) The estimated hourly wage paid to participants and the total amount spent on participant compensa-
tion. Not Applicable.



Sascha Xu◦, Sarah Mameche◦, Jilles Vreeken

A Theory for the Observational Domain

We provide the proofs for our theorems here, where we assume familiarity with d-separation and refer to Lauritzen
[1996] and Pearl [2009] for background on graphical causal models.

A.1 Faithfulness Assumption

Assumption 3.1. [Faithfulness] Given p random variables with true causal graph G∗, a pair of variables X and

Y is algorithmically independent conditioned on a set of variables Z, i.e. IA(PX ;PY | Z)
+
= 0, if and only if they

are d-separated in G∗.

Lemma 1. Under the faithfulness assumption, the compression gain of a true edge (X,Y ) is positive,
i.e. g(XX , XY ;G) > 0 for any graph G that does not contain it.

Proof. If X and Y are connected in the true graph G∗, then no set Z exists that d-separates X and Y . Hence,

IA(PX ;PY | Z)
+
> 0 for any set Z. Then, it holds that

0
+
< IA(PX ;PY | paGY ) = K

(
PY |paGY

)
−K

(
PY |paGY ∪ {X}

)
= g(XX , XY ;G) .

A.2 Proof of the Graph Identifiability Theorem 3.3

Assumption 3.2. [Algorithmic Independence of Conditionals] The distribution of two random variables X and
Y conditioned on their true causal parents in G∗ is algorithmically independent , i.e.

IA
(
PX|pa∗

X
;PY |pa∗

Y

) +
= 0 .

Theorem 3.3. [DAG Identifiability] Under the Algorithmic Independence of Conditionals and Faithfulness,
given an oracle Ω, Topic recovers the true causal graph G∗.

Proof. We begin by showing that Topic proceeds in a topological order of the true graph G∗. To this end, we
inductively show that the oracle Ω’s conditions are met in each iteration, hence resulting in a valid node with
T (Xk) = k for k = 1, . . . , p.

Base case: We initialize the graph G as an empty graph. A true source X of the graph G∗ fulfills the conditions
of the oracle Ω. That is, all parents of X are accounted for in G. Since G∗ is a directed acyclic graph, there
exists at least one source node for Ω to select.

Inductive step: Assume that at iteration k we have selected a node Z such that T (Z) = k, and G contains all
edges (X,Y ), T (X) < k that are in the true graph G∗. By the faithfulness assumption and Lemma 1, for any
outgoing edge from Z, (Z, Y ) ∈ G∗, T (Y ) > k, the gain g(XZ , XY ;G) > 0 is positive and (Z, Y ) hence added to
the graph G. Thus, for the step k + 1, it holds that ∀(X,Y ) ∈ G∗, T (X) < k + 1 : (X,Y ) ∈ G. The oracle Ω is
again admissible and will return a node Xk+1 such that T (Xk+1) = k + 1.

We have established the Topic proceeds in a topological order T of the true graph G∗. We now show that the
true graph G∗ is recovered.

Recall of all true edges: Topic adds all edges (X,Y ) to the graph G that compress, i.e. g(XX , XY ;G) > 0,
and that are compatible with the topological order, i.e. T (X) < T (Y ). By definition, as T is a valid order
for the true graph G∗, for all edges (X,Y ) ∈ G∗ it holds that T (X) < T (Y ). Furthermore, by Lemma 1, the
compression gain of a true edge (X,Y ) is positive, i.e. g(XX , XY ;G) > 0 for any graph G that does not contain
it. Hence, Topic adds a superset of the true edges, i.e. G∗ ⊆ G.

Removal of all redundant edges: We now show that Topic removes all redundant edges. To this end, we
use the Algorithmic Independence of Conditionals, which states that the Kolmogorov complexity of a superset
of parents paGX ⊇ pa∗X is equivalent to the complexity under the true parents, i.e.

K(PX | paGX)
+
= K(PX | pa∗X) .
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As per Lemma 1, we find a superset of all true edges by adding all edges that compress. Furthermore, it holds
at iteration k that ∀(X,Y ) ∈ G,T (X) < k : (X,Y ) ∈ G∗. Hence, paGX ⊇ pa∗X . By removing all elements of
Z ∈ paGX , for which

K(PX | paGX \ {Z})
+
= K(PX | paGX) ,

we remove only non-parent nodes of X, as by the faithfulness for a true parent Z it holds that

K(PX | paGX \ {Z})
+
> K(PX | paGX) .

Therefore, we prune in iteration k the parent set paGX to the true parent set pa∗X , so that in the end for all nodes
X it holds that paGX = pa∗X and as such G = G∗.

A.3 Oracle

Assumption 3.4. [Information-Theoretic Identifiability] Let X be a resolved node of G, i.e., paG
X = pa

G∗

X , and
Y be a descendant of X in G∗. If all confounders of X and Y are accounted for in G, i.e., paGY ⊇ (pa∗X ∩ pa∗Y ),
then it holds that

IA
(
PX | paG

X ; PY | paG
Y ∪ {X}

)
+
< IA

(
PY | paG

Y ; PX | paG
X ∪ {Y }

)
.

We base our oracle on the compression gain of an edge (X,Y ) in graph G, defined as

g(X,Y ;G) = K
(
PY | paG

Y

)
−K

(
PY | paG

Y ∪ {X}
)
.

With that in mind, we construct the oracle Ω(G,T k−1) as follows

argmax
T (X)=−1

(
min

T (X)=−1
g(X,Y ;G)− g(Y,X;G)

)
. (3)

Theorem 3.5. Under Assumption 3.4, the oracle Ω returns a node X for which paGX = pa∗X and T (X) = k is
valid with regard to G∗ provided that G contains all edges up to the k-th node.

Proof. We show that the oracle returns a node X such that T (X) = k, if given a partial topological order T k−1

and a graph G that contains all edges (X,Y ), T (X) < k that are in the true graph G∗. To this end, we distinguish
between two cases: paGX = pa∗X , i.e. all parents are accounted for or ∃Z : Z /∈ paGX ∧ Z ∈ pa∗X , i.e. a parent is
missing.

All parents accounted for: : Let X be a node for which paGX = pa∗X and consider any remaining node Y ,
T (Y ) > k, Y ̸= X. If Y is d-separated from X given paGX , it holds that both IA(PX | paGX ;PY | paGY ∪ {X}) = 0
and IA(PX | paGX ∪ {Y };PY | paGY ) = 0, as they are independent and their parents can not be collider nodes as
it holds that T (Z) < k for all Z ∈ paGY and for all Z ∈ paGX . Hence, if Y is d-separated from X given paGX , the
delta in this case is ∆X,Y = 0.

Let Y be not d-separated from X given paGX . Then Y is a descendant of X in the true graph G∗, as all ancestor
nodes of X are already accounted for in G. We first show that Assumption 3.4 applies to X. We note that
for any confounder Z of X and Y , i.e. Z ∈ pa∗X ∩ pa∗Y , must come before X in the order so that T (Z) < k.
By the completeness of G up to k, all edges (Z, Y ) are in the graph G, hence fulfilling the requirement that no
confounding path is opened by adding X.
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Hence, the edge (X,Y ) is identifiable through Kolmogorov complexity, i.e.

IA
(
PX | paG

X ; PY | paG
Y ∪ {X}

) +
< IA

(
PY | paG

Y ; PX | paG
X ∪ {Y }

)
K(PX | paG

X)−K(PX | paG
X ∪ {Y })

+
< K(PY | paG

Y )−K(PY | paG
Y ∪ {X})

K(PX | paG
X) +K(PY | paG

Y ∪ {X})
+
< K(PY | paG

Y ) +K(PX | paG
X ∪ {Y })

0
+
<

(
K(PY | paG

Y )−K(PY | paG
Y ∪ {X})

)
−
(
K(PX | paG

X)−K(PX | paG
X ∪ {Y })

)
0

+
< g(X,Y ;G)− g(Y,X;G)

0
+
< ∆X,Y .

That is, the compression gain of the causal edge (X,Y ) outweighs the compression gain of the anti-causal edge
(Y,X) if paGX = pa∗X , i.e. ∆X,Y > 0. Hence, if X is a node for which paGX = pa∗X , for any admissible graph G

min
Y,T (Y )=−1

∆X,Y (G)
+
≥ 0

.

A parent is missing: On the other hand, let paGX ̸= pa∗X . Consider a missing node V ∈ pa∗X \ paGX . Either
V is resolved in the graph G, i.e. paG

V = pa∗
V , or we recursively find an ancestor node Z ∈ pa∗

V \ paG
V that

is. For that node Z there exists an unaccounted path from Z to X in the true graph G∗ so that they are not
algorithmically independent, i.e.

IA
(
PX | paGX ;PZ | paZ

G

) +

̸= 0 .

As X is anti-causal for Z, and all parents of Z are accounted for in G, by Assumption 3.4 it holds that

g(X,Z;G)
+
< g(Z,X;G) ⇔ ∆X,Z(G)

+
< 0 .

Hence, if X is a node for which paGX ̸= pa∗X , for any admissible graph G

min
Y,T (Y )=−1

∆X,Y (G)
+
< 0 .

Using the oracles definition from Eq. (3), which defines the returned node X as

argmax
T (X)=−1

(
min

T (X)=−1
g(X,Y ;G)− g(Y,X;G)

)
,

this shows that for any node X it must hold that paGX = pa∗X , provided such a node X exists. As G∗ is a
directed acyclic graph and G is complete up to node T (X) = k, there exists a valid topological order and hence
a compatible node X with T (X) = k to progress the partial order T k−1.

A.4 Proof of Theorem 4.2

Assumption 4.1. [Additive SCM] We consider a structural causal model where each variable Y is generated as
a sum of its parents and noise as per

Y =
∑

X∈pa∗
Y

fX,Y (X) +NY . (2)

Theorem 4.2. Under the additive SCM as per Eq. (2), any descendant Y of a resolved node X with paG
X = pa

G∗

X

can be expressed as a post-nonlinear model of X, where Assumption 3.4 holds if the post-nonlinear model is
identifiable.
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Proof. Given a set of variables that follow a causal structure G∗ adhering to an additive SCM as per Eq. (2).

Let X be a resolved node of G with paG
X = pa

G∗

X , and Y be a descendant of X in G∗ and all confounders of X
and Y be accounted for in G, i.e. paGY ⊇ (pa∗X ∩ pa∗Y ).

Consider the SCM of Y given the parents of Y and X as

Y =
∑

Z∈pa∗Y

fZ,Y (Z | paGY ∪ {X}) +NY .

We now show that the causal direction corresponds to a post non-linear noise model, which is known to be
separable into independent functions and noise terms in the causal direction only [Zhang and Hyvärinen, 2009].

We first separate the parent set of Y into two sets: pa1 = {Z ∈ paGY ∨ Z /∈ an∗X | Z ∈ pa∗Y }, i.e. all parents
that are either accounted for or non-ancestors of X, and the remaining parent set pa2 = pa∗Y \ pa1 that directly
depends on X. We first show that each parent in pa1 is independent of X conditioned on paGY . We begin by
dropping all parents Z which are already accounted for in G, i.e. T (Z) < k ∧ Z ∈ paGY , as the term fZ,Y (Z | Z)
is deterministic. For all Z ∈ pa1 that are not yet accounted for in G, i.e. Z /∈ paGY , we distinguish between three
cases:

1. Z is independent of X: If Z is independent of X in the true graph G∗, fZ,Y (Z) also is independent of
X. Furthermore, there can not be a collider for Z and X modeled in G as no outgoing edges from X have
been fitted. Hence, fZ,Y (Z) is independent of X.

2. Z is an ancestor of X in G∗: This is a contradiction, as G must be complete up to X. Hence, the edge
(Z, Y ) must be in the graph, which contradicts the assumption that (Z, Y ) is not accounted for in G.

3. Z and X are confounded in G∗: Let Z and X be confounded in the true graph G∗. Then there exists a
set of variables C, ∀V ∈ C : T (V ) < k that d-separates Z and X, so that IA(PZ ;PX | C) = 0.

For all V ∈ C there must be an unblocked path to Y , so that they are algorithmically dependent,

i.e. IA(PV ;PY | {V })
+
> 0. Therefore C must be contained in the parents of Y in G, i.e. C ⊆ paGY , as

all non-d-separated pairs of variables that have T (V ) < k are included in G. Consequently, X and Z are
d-separated through paGY so that fZ,Y (Z | paGY ) is independent of X.

Hence, all terms in pa1 are independent ofX, allowing us to compose an additive independent noise term together
as NG

Y = NY +
∑

Z∈pa1 fZ,Y (Z | paGY ).

What remains are the terms in pa2, i.e. the parents of Y that directly depend on X. If pa2 = {X}, then Y is an
additive noise model Y = fX,Y (X)+NG

Y , which is identifiable as outlined by Hoyer et al. [2008]. If pa2 contains
variables Z which are ancestors of X in the true graph G∗, then those variable Z can in turn be represented as
an additive noise model Z = fX,Z(X)+NG

Z using the same distinction as above. Therefore, we can express Y as

Y =
∑

Z∈pa2

fZ,Y (fX,Z(X) +NG
Z ) +NG

Y

which is a post-nonlinear model, and hence identifiable apart from certain pathological cases [Zhang and Hyväri-
nen, 2009, Peters et al., 2014]. In the case that it is identifiable, it holds that

IA
(
PX | paGX ; PY | paGY ∪ {X}

) +
= 0 ,

whereas in the anti-causal direction, no models exist that can separate the effect Y into independent noise terms
so that

IA
(
PX | paGX ∪ {Y }; PY | paGY

) +
> 0 .

Hence, Assumption 3.4 holds for the additive SCM.
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B Theory for the Multi-Context Domain

We first provide background on a common representation of multi-context data through an augmented graphical
model, allowing to translate changes of causal conditionals to d-separations in the augmented graph.

B.1 Augmented Causal Graphical Model

We recall our generating distribution in multiple contexts as follows.

Definition B.1 (Multi-Context Generating process). The joint distribution P c over X1, . . . , Xp in a context c
can be written as

P c
X1,...,Xp

=
∏
i ̸∈I∗

c

PXi|paG
i

( ∏
i∈I∗

c

P c
Xi|paG

i

)
,

That is, each context c results from causal mechanism shifts of a subset of variable indices I∗c ⊆ {1, . . . , p}.

Equivalently, to represent mechanism changes I∗c jointly with the causal graph G, we use the following augmented
graphical causal model [Huang et al., 2020].

Definition B.2 (Augmented Causal Graph). Given a collection of causal models {(G,P c)}c∈C in a set of contexts
C with shared causal graph G and distribution P c as in Def. B.1, the augmented causal model (G′, P c

X∪{C})
consists of

(i) a categorical index variable C with support C

(ii) a causal DAG with vertices {1, . . . , p} ∪ {C} and edges

{(i, j) ∈ G} ∪ {(C, i) | ∃c, c′ : P c
Xi|paG

i
̸= P c′

Xi|paG
i
} .

.

We restate our shift faithfulness assumption for ease of access here.

Assumption 4.3. [Shift Faithfulness] For each i and any two environments c, c′, when i ∈ I∗c′ , then

P c
Xi|paG

i
̸= P c′

Xi|paG
i
.

The shift faithfulness is stated for the causal model in Definition B.1 and corresponds to faithfulness with C in
the augmented graph. Together with the causal Markov property, it allows connecting distribution changes of
conditionals across contexts to d-separation statements in the above augmented causal graph as follows.

Lemma B.3. For any node i and node set P ⊆ {1, . . . , p}, the conditional PXi|XP
changes if and only if Xi is

d-connected to C given the nodes XP in G′, j ⊥⊥G′ C | P .

This holds as a direct consequence of the Markov property and faithfulness in the augmented graph [Perry et al.,
2022]. We move on to our theoretical results.

B.2 Proof of Lemma 4.4 on Mechanism Shifts along Paths

Lemma 4.4. [Path Shifts] Given a resolved node X and node Z with a directed path from X to Z in G∗, when
Assumption 4.3 holds, PX|Z and PZ both reflect the true mechanism changes of X,

P c
X|paG

X
̸= P c′

X|paG
X
⇒ P c

Z ̸= P c′

Z

and similarly for PX|Z for all pairs c, c′.

Proof. Assume there is a pair of contexts c, c′ such that P c
Xi|paG

i
̸= P c′

Xi|paG
i
holds.

Then the augmented G′ with an auxiliary node C contains an edge towards node i by construction. Therefore, no
matter the conditioning set XP (where P ⊆ {1, . . . , p} is a subset of node indices), i and C will be d-connected.
The result then follows under (shift) faithfulness and Lemma B.3.
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B.3 Proof of Theorem 4.7 on Multi-Context Identifiability

Assumption 4.5. [Independent Mechanism Shift] We assume that causal mechanism shifts occur independently,

I
(
P c
X|paG

X
̸= P c′

X|paG
X

)
⊥⊥ I

(
P c
Y |paG

Y
̸= P c′

Y |paG
Y

)
across any two contexts c ̸= c′ for all i ̸= j.

Assumption 4.5 implies that existence of the edge C → i provides no information on the existence of an edge
C → j for i ̸= j. To show that this allows to decide the orientation of edges in our topological ordering algorithm,
we assume that there are sufficiently many such edges and that not all variables undergo mechanism shifts.

Assumption 4.6. [Sparse Mechanism Shift] We assume that the probability pi of a mechanism change between
any two contexts occurring is bounded away from 0 and 1 for all i.

We move to the result that information-theoretic identifiability as in Assumption 3.4 holds for our score given
sufficiently many contexts.

Theorem 4.7. Under Assumptions 4.3, 4.5 and 4.6, Assumption 3.4 holds with high probability as |C| → ∞.

Proof. Let X be a resolved node of G with paG
X = pa

G∗

X , and Y be a descendant of X in G∗ and all confounders
of X and Y be accounted for in G, i.e. paGY ⊇ (pa∗X ∩ pa∗Y ). We recall our score as

ĝ(X,Y ;G, I) = ĝ(Xo, Y o;G) +
( ∑

c:Y ∈Ic

ĝ(Xc, Y c;G)
)
,

and similarly ĝ(Y,X;G, I) in the anti-causal direction.

By Lemma 4.4, the inferred targets Ic in the anti-causal direction are the same as in the causal direction but
in addition include Y ∈ Ic whenever X ∈ Ic. Therefore, if there exists a c such that Y ̸∈ I∗c but X ∈ I∗c , the
score ĝ(Y,X;G, I) will contain one interventional more term ĝ(Xc, Y c;G) and thus be strictly larger. For this
to work, we also need to ensure there is no confounder Z, Z ∈ I∗c that overlaps with the change of X and Y .

Therefore, we bound the probability of the event that Xi changes, but neither Xj nor any of the confounders P
change similarly as in Perry et al. [2022].

For a given pair c, c′ of contexts, this event occurs with probability

P
[
I(P c

i ̸= P c′

i ) = 1; I(P c
j = P c′

j ) = 1; I(P c
k = P c′

k ) = 1,∀k ∈ P
]

= pc,c
′

i (1− pc,c
′

j )
∏
k∈P

(1− pc,c
′

k )

≤ pc,c
′

i (1− pc,c
′

j )(1−max
k∈P

pc,c
′

k )|P |

where P ⊆ {1, . . . , p} are the indices of the path-confounders accounted for in G. Above, we independence of
mechanism shifts (Assumption 4.5) and a worst-case bound for the variable k with the highest shift probability

pc,c
′

k .

We lower bound its inverse probability to ensure that the above event occurs in at least one pair of contexts.
Using a union bound over all contexts and path-confounders leads to the following overall expression,

P
[
̸ ∃c, c′ :

[
I(P c

i ̸= P c′

i ) = 1; I(P c
j = P c′

j ) = 1; I(P c
k = P c′

k ) = 1,∀k ∈ P
]]

≥ 1−
(
(1−max

c,c′
pc,c

′

j )min
c,c′

pc,c
′

i (1− max
c,c′,k∈P

pc,c
′

k )
)⌊|C|/2⌋|P |

≥ 1−
(
(1− pUB

j )pLBi (1−max
k∈P

pUB
k )

)⌊|C|/2⌋|P |
,

where we substitute in the worst-case probabilities with lower (upper) bounds pLB, pUB. Finally, identifiability
is achieved in the limit using the assumption that bounds pi away from zero and 1 for all i (Assumption 4.6).
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Algorithm 1: Topic

Input: Data X ∈ Rn×p×m, edge score function ĝ, edge significance test t̂
Output: Causal DAG G
G← ∅
T (i)←∞ for each i ∈ V
for k = 1, . . . , p do

worst δ = ∞
for i ∈ V, T (i) ≥ k do

δi = BestEdgegainTo(i, G);

node at k ← argmini δi ▷ Step 1
T (node at k)← k
AddEdgesFrom(node at k, G) ▷ Step 2
PruneEdgesTo(node at k, G) ▷ Step 3

return G

C Implementation Details

We outline the iterative algorithm Topic that identifies the causal graph in a topological order. It uses an
information-theoretic scoring criterion ĝ((Xi, Xj);G) scoring a directed edge Xi → Xj under the current graph
G, as well as a significance test t̂((Xi, Xj);G).

Topic has the following steps. We initialize the inferred graph G as a causal graph without any edges. In
addition, we maintain a set of nodes A = {1, . . . , p}, from which we remove nodes in topological order. Now, we
perform p iterations until all nodes are resolved.

1. Select that node i for which the best attainable score gain is smallest, in the sense that

argmax
i∈A

(
min

j∈A,j ̸=i
ĝ((Xi, Xj);G)− ĝ((Xj , Xi);G)

)
.

2. For all outgoing edges (Xi, Xj) ̸∈ G with j ∈ A, add the edge to G if the gain is significant, using the
test t̂((Xi, Xj);G).

3. For all incoming edges (Xh, Xi) ∈ G, prune the edge if removal results in significant score improvement.
Remove i from A.

Complexity We now examine the complexity of Topic with regard to the number of variables p and the

number of samples n. We perform a total of p iterations. In the k-th iteration, we evaluate the gain of (d−k)2+d
2

possible edges. To this end, we need to fit a model with at most d variables regressing onto Y . The complexity of
model fitting depends on the model class, which we shall denote as T (n). Solving cubic splines for each variable
Xi in the additive model has O(n) complexity, where we have at most d variables. Hence, the total complexity
of Topic with cubic splines is O(d4n). In practice, for sparse graphs with pa∗X << p, the complexity is O(d3n).

D Time Series Implementation

The above score can be straightforwardly applied to observational time series, where X is a real-valued process
of length n observed over time, and Xt denotes an observation at time t. The necessary modifications include
replacing the causal parents in the SCM by its timed variant

Yt =
∑

Xt∈pa∗Y

fXt,Yt
(Xt) +NYt

,

where pa∗Y can include both instantaneous and lagged relationships. That is, G includes edges ((t, i), (t′, j)) with
either i ̸= j or t ̸= t′, where we assume a given maximum time lag t′ − t ≤ τ .
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E Supporting Experiments

Extended Results Below, we extend Fig. 3 to include the full evaluation metrics for each method.
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Bivariate Causal Discovery To see whether Topic can effectively discover causal directions in the bivariate
case, we also run the methods on the Tübingen Cause-Effect pairs [Mooij et al., 2016], a real-world benchmark
comprising 108 cause-effect pairs with known ground truth. As shown below, Topic performs on par with the
best competitors Score and Resit.
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